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ABSTRACT Action recognition is the basic task for video understanding. Although the action recognition
has achieved impressive performance in the static image-based task (e.g. Stanford40) with deep learning,
real-time video-based action recognition is still a challenging task due to video’s high complexity and
computation cost. Motivated by human’s recognition ability with only a short glance, we propose the
fast light-weighted Temporal Memory Network (TMNet) to achieve real-time video action recognition.
The TMNet has a self-supervised structure for exploring both spatial and temporal information with
a single video frame. TMNet has three main parts, the base backbone, the regression branch, and the
classification branch. Specifically, the base backbone network is a shallow 2D CNN network to obtain the
video’s initial feature sequences. The classification branch is based on existing successful video recognition
models(e.g. TSN, I3D). To make the TMNet learn the spatial-temporal information at a lower cost, we add
a self-supervised regression branch. This branch is based on light-weighted 2D CNN and only uses one
frame as input. In the training stage, the input of TMNet is a video sequence, the classification branch
combined with the base backbone is responsible for learning the video sequence’s spatial-temporal feature.
Meanwhile, the self-supervised regression branch aims to learn the same spatial-temporal feature under the
supervision of the classification branch’s output. And the regression branch’s input is a single-frame feature
sampled from the encoded video sequence. In this way, the regression branch is forced to learn temporal
information of adjacent frames with one frame. Therefore, TMNet only needs one frame to predict each
video’s spatial-temporal information in the inference stage. Finally, TMNet can achieve real-time action
recognition and better accuracy by extracting temporal information from a static image. Abundant ablation
experiments demonstrate TMNet has a good trade-off between accuracy and speed.

INDEX TERMS Video action recognition, spatial-temporal feature, real-time video understanding.

I. INTRODUCTION

There have been a lot of significant works concentrating
on action recognition. Early researchers try to solve the
problem from single still images due to the limit of com-
putation sources [1]-[4]. These works have achieved satis-
fying performance in small image-based data sets, such as
PASCAL VOC action [5] and Stanford 40 [6]. These achieve-
ments demonstrate the feasibility of recognizing action with
only one glance (single video frame). Although significant
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achievements are obtained in still-image-based action recog-
nition task, the understanding of actions in video data is more
complex, there is abundant spatial and temporal information
existing in video data. Recently, most successful action recog-
nition (video understanding) studies use larger-scale video
data sets and complex deep learning models. Two-stream
architecture [7], C3D [8] and LSTM based models [9] are
the representations of the most successful methods for video
action recognition. Although these methods have good per-
formance in the recognition accuracy, their inference speed
is much slower than simple 2D CNN. Therefore, we choose
TSN [10], a 2D CNN based model, as the baseline network of
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the proposed TMNet. We aim to improve both the accuracy
and speed performance of the TSN further to realize the
real-time video understanding.

As mentioned above, Video Action Recognition meth-
ods have achieved significant performance on large scale
video dataset. However, most of these methods, including
the two-stream network, C3D, LSTM based model, suffer
the problem of high computation cost, resulting in terrible
inference speed. Video Action Recognition is unlikely to be
widely applied in real-time scenes because of the problems
mentioned above. Some researchers are trying to reduce the
parameters and computation cost of such large models. For
example, to deal with the problem of large computation
cost and parameters, the 13D [11] and R(1+42)D [12] are
proposed based on C3D [8]. However, as we know, these
modified models always perform worse than C3D in the
real application. And these variants are still slower than a
simple 2D CNN. Therefore, we choose the most popular
2D CNN-based method, TSN [10], as the baseline network.
Although the 2D CNNs have fewer parameters and faster
inference speed, The current 2D CNN based methods can’t
capture motion or temporal information with only a single
image as input. And their excellent results are obtained by
inference with a dense video sequence, which increases the
computation cost and decreases their inference speed. Thus,
we propose a new 2D CNN-based model which can recognize
actions with the sparse video sequence, even one frame.
To this end, we design the new 2D CNN-based action recog-
nition method, Temporal Memory Network (TMN et),* which
can learn temporal information from a single frame and rec-
ognize action better with fewer frames. With TMNet, we can
not only keep the advantage of spatial-temporal information
but also realize the real-time video understanding.

Several situations are hard to deploy large action recogni-
tion models, especially for computation source limited situa-
tions. For example, due to the limited storage and computing
capacity of small edge computing devices, it is painful and
uneconomical to deploy large models such as C3D for Video
Action Recognition. While our TMNet is based on one-frame
action recognition and has few parameters, it is possible to
implement such a light-weighted model on small devices,
such as the dashcam.

Meanwhile, the input of most action recognition models is
a sampled sparse video sequence. Thus, the performance of
Video Action Recognition is not just related to the model, but
also dependent on the input data, i.e., how to sample the orig-
inal video [13]. In some specific applications, such as stream
media or live video applications, there are requirements of
both real-time and accuracy. While the stream media data is
not stored in the storage, those large recognition models will
have difficulty in sampling video and feeding data. In this
situation, our TMNet does not suffer such limitation because
TMNet is a one-glance action recognition model, which only
needs a single frame for video understanding.

“The code will be released in https://github.com/ziming-liu/TMNet.
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TMNet aims to use one-glance input and obtain a bet-
ter feature containing both temporal and spatial features.
To achieve that, we have an underlying assumption: motion
information or temporal information can be learned by the
network with only one frame as input. Figure 1 shows the
motivation of the TMNet. Mapping A is the classification
branch of the TMNet, while Mapping B is the self-supervised
regression branch. According to our assumption, Mapping B
aims to extract the spatial-temporal feature which is the
same as the output of mapping A, with only one frame.
There have been some methods that proved the feasibility
of predicting temporal information with only a single image.
Wang et al. [3] propose Hybrid Video Memory (HVM)
machine to hallucinate temporal features of still images
with optical flow, which depend on high computation cost.
There also have been several works about predicting opti-
cal flow which contains temporal information from a single
image [14], [15]. These works proved that temporal informa-
tion could be learned from a single frame.

Map s
\p" 1% &
(o v

Video Sequence

Feature vector for
action recognition

FIGURE 1. The motivation and basic idea of the TMNet.

Specifically, we designed a light-weighted model con-
taining two branches, called Temporal Memory Network
(TMNet). The TMNet can remember both the temporal and
spatial information of a video with a self-supervised training
way. In this way, it can predict the temporal information
with only one frame in the inference stage. The TMNet has
three parts, the base backbone, the self-supervised regression
branch, and the classification branch, as shown in Figure 2.

In the training stage, we feed a video sequence to the
TMNet to make sure the classification branch combined with
the base backbone can provide enough spatial-temporal infor-
mation. Firstly, the original video sequences are encoded as
the initial feature sequences by the base backbone. Then,
there are two different pathways. One keyframe is sam-
pled from the feature sequence and fed into the regres-
sion branch. On the other hand, the classification branch
extracts the video’s feature with the whole feature sequence.
This process follows the common practice of most CNN
based action recognition models. Therefore, the output of the
classification branch is a spatial-temporal feature, which is
also the supervised signal for the self-supervised regression
branch. The regression branch is optimized with the classifi-
cation branch’s output as supervised signal.

In the inference stage, only one sampled frame is needed
to extract spatial-temporal information, as the self-supervised
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FIGURE 2. In the training stage, we feed one frame to the regression branch (RB), while the classification branch (CB) learns spatial-temporal features
from the whole video sequence. In the inference stage, the regression branch can predict spatial-temporal information from a single frame. Finally,

the best result is obtained by fusing the outputs of CB and RB.

regression branch has already learned how to predict the
spatial-temporal feature with a single frame. In addition,
the classification branch can predict the appearance informa-
tion of a single image. Finally, we can obtain the best result
by combining these two kinds of features.

All in all, the contribution of TMNet can be summarized

as follows.

o Unlike most previous work that focuses on designing
more sophisticated and robust models, we concentrate
on realizing real-time video understanding with com-
petitive results by proposing a new one-glance simple
2D CNN-based model, TMNet.

e We design a self-supervised feature consistency
mechanism, which promises the TMNet can learn
spatial-temporal information from a single frame.

o The architecture of the TMNet is flexible. The base
backbone and classification branch can be replaced
with most successful video networks. We propose three
variants in this paper, i.e. TMNet-2D, TMNet-3D-A,
TMNet-3D-B.

o TMNet keeps the advantages of 2D CNN (i.e. fewer
parameters, faster speed, lower computation cost), and
achieves significant performance for the one-glance
action recognition. There is a good speed-accuracy
trade-off for the TMNet.

Il. RELATED WORKS
Action recognition has been an attractive and challenging
research direction in the past few years. Many works are
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solving the problem from different directions, from still
images to videos, from RGB images to optical flow. Usu-
ally, we achieve image recognition with apparent features,
but more and more methods achieve action recognition with
both appearance information and temporal information. In the
past, temporal information is learned from the video directly.
Current works, such as predicting optical flow from images
(i.e. predicting temporal information from still images), have
been proved to be feasible. Therefore, we summarise the
related works about action recognition into three categories:
(1) Action recognition on still images, (2) Action recognition
on videos, and (3) Predicting optical flow from still-image,
(4) Real-time action recognition.

A. ACTION RECOGNITION ON STILL IMAGES

After deep learning was proposed in 2006 [16], the feature
learning ability of the convolution neural network has been
drawn more attention and emerged gradually with the update
of numerical calculation equipment(graphics processor units)
and annotated data [17]. CNN can achieve reasonable per-
formance on a visual recognition task and even match or
exceed human performance in some areas. The CNN-based
method is also used for the action recognition of still images.
Gkioxari et al. [1] proposed R*CNN to classify images
and return object proposals, which combines the object and
environment factors to realize the action recognition of still
images. Zhang et al. [4] performed recognition in the pres-
ence of only image-level action labels in the training stage,
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with a systematic approach. To deal with single image action
recognition, the authors in [2] divided the human body into
seven parts: head, torso, arms, hands, and lower body, and
defined a few semantic part actions for each of them. How-
ever, most of these methods are designed and trained only on
a small image dataset, and the number of action categories
is also limited. Action is closely related to temporal infor-
mation. But these still images based works all rely on the
apparent features of annotated images without considering
temporal information. Therefore, Wang et al. proposed a
novel HVM machine to address action recognition with few
images, via hallucinating motion cues of still images from
videos. But the HVM machine hallucinates the motion cues
on the existence of the optical flow, which need to be densely
annotated and not always available.

B. ACTION RECOGNITION ON VIDEOS

Video-based action recognition is considered relatively well-
established. Traditionally, the best-performing method is iDT
(Improve dense trajectory) [18], and the follow-up work
improves on this basis. Recently, many new methods driven
by deep learning have been proposed to solve the action
recognition problem. We summarise them into three cate-
gories, including (1) the two-stream model, (2) 3D CNN
model, and (3) the LSTM-based model.

The two-stream model is built with two streams containing
an RGB stream and an optical flow stream. Both spatial
information and temporal information are well-considered.
Simonyan et al. firstly proposed two-stream ConvNets com-
bining the spatial RGB feature and the temporal optical
flow feature. Inspired by this architecture, TSN (Temporal
Segment Networks) [10] uses an efficient sparse temporal
sampling strategy to learn the two-stream model, showing
better performance on long videos’ recognition. TRN (Tem-
poral Relation Network) [19] is another novel model based on
two-stream architecture, which revealed temporal relations
existing in videos.

Another category is 3D CNN models, such as C3D [8],
which learns both spatial information and temporal informa-
tion with a 3D kernel. Varol et al. [20] demonstrated the
advantages of using long-term temporal convolutions with
increased temporal input and high-quality optical flow fea-
tures. 13D [11] proposed to use 3D convolution operation to
learn the spatial-temporal information. Pseudo-3D Residual
Net (P3D ResNet) [21] R(2+1)D [12] etc. are all the mod-
ified version of I3D. They tried to use fewer parameters to
achieve better performance. Although 3D CNNs attained high
accuracy, these methods consume large computing resources
and need clean video clips. While our model uses 2D CNN to
learn the temporal information unsupervised, this design can
achieve similar performance and use fewer parameters and
time.

There are also some works based on LSTM [22].
Two-stream LSTM [23] is proposed to learn spatial features
from CNNs and temporal features from LSTM models. These
sophisticated models, in some cases, are difficult to deploy
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in the terminal. Meanwhile, the accuracy will decrease when
only pictures are provided.

C. LEARNING TEMPORAL INFORMATION FROM
STILL-IMAGE

One of the underlying assumptions of our model is that
temporal information can be learned from still images, and
there have been a lot of works proving that. For example,
several studies started to directly predict the optical flow
(a kind of temporal information) from still images.
P-CNN [24] was designed to predict motion without human
labeling effort. Im2Flow [15] proposed an encoder-decoder
CNN model that converted a still image into an accurate flow
chart. It put the original static image and the generated optical
flow image into the two-stream network. TVNet [14] is an
end-to-end trainable network to learn optical flow features,
which was modified from the traditional TV-L1 algorithm.
These methods aiming to predict the optical flow demonstrate
that learning temporal information from still images is possi-
ble. Therefore, we claim that learning temporal information
from still images is feasible.

D. REAL-TIME ACTION RECOGNITION

As described in Section II-B, various action recognition
methods have different architectures and parameters, which
affect the inference time of the action recognition models.
Commonly, the methods based on 2D CNN have faster
speed and less running time, while those methods based
on 3D CNN or optical flow inputs suffer slower inference
speed. In this subsection, we discussed the current real-time
action recognition models to make an overall comparison.
Firstly, for the action recognition task, TSN is the most pop-
ular and light-weight model based on 2D CNN [10]. It can
achieve faster speed than most action recognition models and
keep advanced accuracy performance. But TSN is also weak
in learning temporal information. TSM [25] is a modified
model based on TSN, having a low-cost Temporal Shift
Module, which shifts parts of the channel vector along the
temporal dimension. In this way, TSM can learn the tem-
poral information of adjacent frames. Besides these models
based on 2D CNN, Eco [26] is another method towards the
online video understanding. It is composed of 2D CNN and
3D CNN, achieving fast speed by a new sampling strategy.
They achieved faster speed compared with TSN under some
conditions. T-C3D [27] is another 3D CNN based method
for real-time action recognition, it used 3D convolution oper-
ation to replace the traditional heavy calculation features
(e.g., optical flow and IDT) to achieve faster speed. Due to
the 3D CNN, T-C3D is slower than the above methods. Here,
we propose a different way to learn temporal information in a
very low-cost and self-supervised way. The main architecture
is based on 2D CNN to promise faster speed in the inference
stage.

IIl. TEMPORAL MEMORY NETWORK
We first explain the motivation and intuition of the Temporal
Memory Network (TMNet): learning video information with
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only one frame. Then, we introduce the three parts of the
TMNet separately. In this paper, we only use a simple design
to validate our assumption, and the final results support this
hypothesis.

A. MOTIVATION

The previous action recognition model mostly concentrates
on modifying the backbone of the action classification net-
work. These models take more frames as input, but there is
only slight performance improvement. Different from these
approaches, we argue that few frames are enough to recognize
human actions in videos, and even a single frame can pre-
dict the information of adjacent frames. Therefore, we pro-
pose the TMNet to improve the 2D CNN based model with
a self-supervised strategy. Specifically, the TMNet learns
motion prior information from a video sequence in the train-
ing stage, but it recognizes actions by predicting temporal
information from a single frame (one-glance) in the inference
stage.

B. TMNet-2D

The TMNet is a novel action recognition framework, which is
entirely different from most CNN networks for Video Action
Recognition. Firstly, it contains three parts: base backbone
(BB), self-supervised regression branch (RB), and classifica-
tion branch (CB). The BB and CB are based on existing action
recognition models (e.g. TSN), the RB is a light-weighted
2D CNN. Secondly, there are different pipelines for the
TMNet in the training stage and inference stage.

Given the input of base backbone as {;}, (i =
{0,1,...,T}, T > 1 if training stage, T = 1 if infer-
ence stage). The base backbone is a shallow 2D CNN
which is used to extract the original features sequences
{Fbase.0s - - - Foase,is - - - Frase,T—1} wWhere T is same as the
original input video sequence. The outputs of the base back-
bone are the input to the regression branch and classifi-
cation branch. The details can be found in the next two
subsections III-B1 and III-B2.

For the training strategy, in the training stage, the output of
the classification branch is used for action classification with
traditional cross-entropy loss, this is a supervised learning
process. The regression branch is trained in a self-supervised
way to make its feature consistent with the video’s feature
from the classification branch. In the inference stage, the out-
puts of both two branches are combined together for final
classification.

1) SELF-SUPERVISED REGRESSION BRANCH (RB)

Most researches have proved that video-based action recogni-
tion relies on both temporal information and spatial informa-
tion. Generally, these models used more video frames as input
to achieve higher performance. However, the improvement
is slight even with a longer sequence. Actually, there is no
need to use too many video frames since there is heavy
redundancy in video frames. Meanwhile, more video frames
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also introduce large computation cost and make the model
slower.

Inspired by the ideas of motion prediction in still
image [3], [14], [15], we propose the self-supervised regres-
sion branch (RB) to learn the spatial-temporal feature of
the whole video with only one frame. Given the out-
put feature sequence of the base backbone network, i.e.
{Fbase.0» - - - Fbase.i» - - - Fbase.T—1}, where T is the same as
the original input video sequence. We sample one frame
Fpase,i from the output feature sequence. The Fpuge ;i 1S the
input of the regression branch (RB). We will discuss different
sampling strategies in the experiments section. As shown
in Table 3, we found that sampling the center frame of the
sequence is more suitable for predicting the temporal infor-
mation of adjacent frames.

The regression branch is optimized with a self-supervised
way, there is a lot different ways to achieve this. In this paper,
we choose the simplest but useful strategy. Specifically,
the output feature of the classification branch is regarded
as a pseudo supervised signal. The feature of the regression
branch needs to fit it with a regression loss lossgeg, i.e. the
Reg Loss in Figure 2.

Following the common practice, we use the smooth L1 loss
as the regression loss lossgeg. The other options, such as
Cross-Entropy loss, MSE loss, also could achieve similar
results. But the difference between these losses is not the main
point of this paper. The formulation of the lossg.g is shown
as following.

0.5x2 if Ix] <1
LosSpeo(x) = 1
Reg (%) x| — 0.5 otherwise M

where x = Fgree — Fcys. The F¢ys and Fge, are the output
feature of two branches of the TMNet.

2) CLASSIFICATION BRANCH (CB)

The classification branch is another important part of the
TMNet, whose role is to provide a supervised signal for
the regression branch. Because the goal of the regression
branch is to learn the temporal information of the target video,
we should make sure the classification branch can provide
powerful and reliable video features as pseudo supervised
signal. Therefore, there are two ways to make sure that: 1) The
classification branch and base backbone are based on the
existing successful action recognition models. 2) And the
input of the classification branch is the whole video sequence
to provide enough temporal information.

Here, the classification branch can be most CNN-based
action recognition models, such as 2D ResNet [28],
SlowNet [29], I3D [11]. Therefore, the TMNet is a flex-
ible architecture for video understanding, and it can be
used together with most action recognition networks. For
the TMNet-2D, we only use a modified simple 2D ResNet
as a classification branch to verify our assumption. This
CB network is composed of 2D CNN, temporal average
pooling, and a fully connected layer.
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Following most action recognition models, the CB encodes
the video feature sequence {Fpase,0, - - - Fhase,is - - - Fbase,T—1}
into a single video feature Fcy,, this feature contains both
spatial and temporal information of videos.

C. INFERENCES WITH ONE GLANCE

The TMNet has learned the spatial-temporal feature of the
whole video in the training stage, with the feature consistency
between two branches. Thus, the TMNet can predict the
spatial-temporal feature of the video by the regression branch
with only one frame, i.e. inferences with one glance.

For the one-glance action recognition, as shown
in Figure 2, there is only one input frame F; in the inference
stage. The base backbone maps F; to Fpge ;. After that,
Fpase,i 1s the input to both RB and CB. In our basic setting,
RB and CB are all 2D CNN:s, therefore, we can obtain two
feature vectors Fy, and F.g with two branches. Finally,
we combine them to obtain better accuracy performance.
More related experiments about one-glance action recogni-
tion can be found in the experiments section.

When we perform one glance action recognition with
TMNet-2D, F., and Fs generate different types of features,
referring to different semantic information. Except for spatial
features, F,, also contains temporal or motion features of
a video. However, the F;; contains only spatial information
when the input is a single frame. Therefore, it’s essential to
fuse these two different types of features Fy,, and F. to
obtain better accuracy performance in the one-glance action
recognition, although two branches may decrease the infer-
ence speed of TMNet slightly.

IV. EXPERIMENTS

To demonstrate the advantages of the TMNet model, we con-
ducted experiments from three aspects: (1) The speed and
accuracy trade-off of the TMNet. (2) Abundant ablation stud-
ies about the details of the TMNet. (3) The comparison with
the state-of-the-art action recognition methods to prove that
TMNet can not only run faster but also achieve state-of-the-
art accuracy.

A. THE SPEED AND RUNNING TIME OF THE TMNet

To prove the TMNet is suitable for real-time action recog-
nition but keep the state-of-the-art accuracy performance.
We compare TMNet with several state-of-the-art action
recognition models. These experiments are conducted on the
Server with Intel(R) Xeon(R) Silver 4210 CPU(2.20GHz),
256G memory, and 8 Nvidia 2080Ti GPUs. Figure 3 visu-
alizes performance comparison of these models, including
Resnet3D-18 (3 x 8 Frames), Res-I3D (3 x 8 Frames), TSN
(8 Frames), TSM (8 Frames) and TMNet. We reported the
inference speed and topl accuracy, as well as the FLOPs
in Figure 3.

This figure shows that TMNet outperforms other meth-
ods in topl accuracy when the input is video sequences
of 8 frames but keeps fast inference speed similar to the
light-weighted 2D CNN (TSN, TSM). Moreover, we use
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FIGURE 3. TMNet-2D has better accuracy speed trade-off on the UCF
dataset. All of the results are recorded in the same environment. F in this
Figure denotes the number of frames for each video sequence

input.

fewer video frames to speed up the inference of TMNet.
The results suggest that TMNet achieves almost 2x faster
speed compared with TSN or TSM. Also, TMNet has a good
balance in both accuracy and speed when the input is video
sequences of 2 frames.

For the FLOPs, similar to the TSN, TMNet has lower
FLOPs because of the 2D CNN architecture. And the FLOPs
slows down sharply with fewer input frames. This promise
TMNet can achieve real-time video understanding with
one-glance (one frame).

Furthermore, we compare the difference of those TMNets
with different inputs. Figure 4 shows that the inference
speed increases faster and the FLOPs decrease sharply with
fewer input frames, especially when the input only contains
1-2 frames. This indicates that inference with one frame is
important for real-time video understanding.

90
85

80
64 Frames

16 Frames

[ 8 Frames 2 Frames

1 Frames

ToplAccuracy

70
65

66
-5 15 35 55 75

Inference Speed (videos/second)

FIGURE 4. The comparison of the performance of TMNet (based on
ResNet-18) with different numbers of frames as inputs. “Ten crop” data
augment operation is used for inference. The size of the balls means the
FLOPs of the model, same as Figure 3.

Figure 4 also suggests that TMNet has the ability to
run faster and keep the recognition performance stable. All
of the above results demonstrate that TMNet has a good
accuracy-speed trade-off.
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TABLE 1. The one-glance action recognition results with different temporal length in training stage. “RB” and “CB” denote that the results are predicted
by output features of regression branch or classification branch.

RB CB RB+CB
num of frames mAP acc@1 acc@5 mAP acc@1 acc@5 mAP acc@1 acc@5
3 Frames (TSN) 73.63 73.96 93.44
1 Frame 67.21 68.09 91.28 68.67 69.52 91.59 67.98 68.83 91.30
8 Frames 73.23 73.46 92.76 74.43 74.68 92.28 74.78 75.05 92.84
16 Frames 73.34 73.62 92.99 74.37 74.62 92.49 74.95 75.26 93.42
32 Frames 73.66 74.02 92.65 74.26 74.54 92.33 74.89 75.23 93.31
64 Frames 73.85 74.15 92.78 74.32 74.54 92.84 75.13 75.39 93.13

TABLE 2. The ablation study of the network depth for the base backbone, regression and classification branches. The input of the TMNet is 16 frames’

video sequence.

base backbone | RBand CB | mAP acc@l acc@5 | mAP acc@l acc@5 | mAP acc@1 acc@5
| | RB | CB | RB+CB

0 stage 4 stages 72.5 73.01 92.49 73.22  73.67 91.75 74.18 74.70 93.13

1 stage 3 stages 7217  72.67 92.20 74 74.31 92.28 74.56 74.97 92.94

2 stages 2 stages 73.34 73.62 92.99 74.37 74.62 92.49 74.95 75.26 93.42

3 stages 1 stage 73.07 73.46 92.92 7491 75.20 92.99 75.04 75.34 93.44

B. ABLATION STUDIES

1) THE LENGTH OF THE VIDEO SEQUENCE

As mention in Section III, the classification branch learns
the target temporal-spatial feature from temporal feature
sequence. The regression branch aims to learn the same
spatial-temporal features by feature consistency loss. There-
fore, the temporal length of the temporal feature sequence
which comes from the base backbone is one of the crucial
factors for the training. To prove the TMNet can extract
temporal-spatial information with one-frame and figure out
the effect of different sequence lengths, we conduct abla-
tion experiments by sampling a video sequence with T =
{1, 8, 16, 32, 64}. We sampled these sequences with equal
intervals.

Firstly, we prove that TMNet can learn better video features
than simple 2D CNN architecture under the condition of
one-frame inference. Here, we compare TMNet with a stan-
dard TSN [10] model, which used three frames in 3 segments
to train a 2D CNN. The results suggest that TMNet signif-
icantly outperforms TSN when there is more than 1 frame
each sequence used for TMNet training.

Secondly, to prove the regression branch can learn
temporal-spatial information, we conducted more ablation
studies. As shown in Table 1, better performance can be
obtained by fusing the features of the regression branch
and classification branch. Therefore, the RB feature is
different from the CB feature. Moreover, both mAP and
top-1 accuracy of the TMNet increase by using more frames
for training. More frames mean that better temporal informa-
tion is encoded by the classification branch. This indicates
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that the regression branch is learning both spatial and tempo-
ral information.

Besides, when the video sequence only has one frame in
the training stage, the performance of the TMNet decreases
sharply, and the fusing result of RB and CB is not better
than the result of CB. This also proves that the regres-
sion branch can learn the temporal information because
the TMNet’s performance heavily depends on if there is
no temporal feature provided for RB in the training stage.
And this result also suggests the importance of the temporal
information for action recognition, especially for one-frame
inference.

All of the above discussions demonstrate the motivation of
this paper, TMNet can extract spatial-temporal information
with one-glance action recognition (one-frame inference).
And better video features can be obtained with longer video
sequences used in the training stage.

2) THE NETWORK DEPTHS
To keep a fair comparison with other action recognition mod-
els, we make the depth of the TMNet same as most CNN
based models, i.e. four stages, same as the ResNet [28]. For
the three parts of the TMNet network, we compared four
different designs, as shown in Figure 2.

We found that the best results are obtained when we use
3 stages base backbone and 1 stage branches. But the result of
RB is better with 2 stages / 2 stages architecture. This means
that a shallow network is not suitable for the self-supervised
regression branch (RB) to learn powerful temporal
information.
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TABLE 3. The keyframe sampling strategy for regression branch in the training stage.

RB CB RB+CB
segment mAP acc@1 acc@5 mAP acc@1 acc@5 mAP acc@]1 acc@5
beggining 73.31 73.67 92.84 74.15 74.31 92.36 74.80 75.05 93.02
middle 73.77 74.12 93.02 74.80 75.10 92.55 75.38 75.65 92.99
ending 73.38 73.70 92.65 75.25 75.52 92.86 75.50 75.73 93.34

TABLE 4. The key-frame sampling strategy of the regression branch in the training stage. We recorded the results of RB + CB fused features, and there is
no data augment operation adapted. The row is the sampling strategy for the regression branch’s training, while the column is the sampling strategy for

the one-glance inference.

| mAP acc@1 acc@5 | mAP  acc@l acc@5 | mAP  acc@l  acc@5
training . . .
m} beginning middle ending
beginning 71.59 71.93 91.57 72.28 72.59 91.33 71.93 72.16 90.93
middle 73.75 73.96 92.39 73.36 73.57 92.25 74.18 74.33 92.18
ending 71.59 71.93 91.57 72.37 72.75 91.67 71.87  72.27 92.28
3) THE WEIGHT « OF THE REGRESSION LOSS . .
As mentioned in section III, the self-supervised regres- s
sion loss of TMNet is re-weighted with weight «. . "
Here, we conducted a series of experiments to find the s b
best balance between regression loss and classification & e

loss. These ablation experiments are conducted with a
2 stages/2 stages TMNet using 16 frames video sequence.
We change the o coefficient of loss,, from 0.05 to 1.0.
mAP and top-1 accuracy of RB, CB and RB+CB are
recorded in Figure 5. Apparently, the mAP and top-1
accuracy have the same trend. We can find that the TMNet
has the best performance when « is 0.8. The performance
begins to decrease when « is too high or too low.

4) FRAME SAMPLING STRATEGIES FOR TRAINING

Previous works [10] have proposed that the temporal posi-
tion of the sampled frame has a critical effect on the
model’s performance. As shown in Figure 2, there is a
frame sampling operation before the RB and the CB. Fol-
lowing the experiments above, we conducted three experi-
ments about how to sample the keyframe for the regression
branch (RB).

Following previous practices, we divide the whole video
clip into three segments and then sample from one of them.
The comparison results are shown in Table 3. Finally, the best
RB results are obtained when we use the center frame
as RB’s input, the same as human’s intuition. The center
frame can inference and predict the information of both for-
ward frames and backward frames in a short-range. How-
ever, we also noticed that the best results of the TMNet
are obtained for the last-frame case. This is because the
classification branch’s performance also affects the final
results.
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FIGURE 5. This figure shows the results with the changing of «,

the coefficient of the regression loss. Different color refer to the results of
different branches. We present both mAP and top-1 accuracy to find out
the best setting.

5) FRAME SAMPLING STRATEGIES FOR INFERENCE

In addition to the sampling operation in the training stage,
we also conduct abundant ablation experiments to figure out
the effect of sampling strategies in the inference stage. Same
as the last experiment, we sampled the keyframe from the
beginning segment, middle segment, or ending segment. The
inference model is the pre-trained model in the last experi-
ment. And we don’t use any data augment operation to make
sure the results are stable.

As shown in Table 4, the best inference results are obtained
when we sample the input frames from the middle segment,
no matter which sampling strategy we choose in the train-
ing stage. It suggests that TMNet is more sensitive to the
sampling strategy of the inference stage. Same as the sub-
section IV-B4, the frame from the middle segment is more
suitable for extracting temporal information.
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FIGURE 6. The visualization of the output feature maps of regression branch and classification branch with CAM method [30].

6) TMNet-3D

The main idea of the TMNet is to learn the temporal-spatial
feature from a single frame. Besides the basic version based
on TSN [10], we also explore to use a 3D CNN structure
as the classification branch (CB) to guide the training of the
regression branch (RB).

Here, we propose two variants of the 3D TMNet, TMNet-
3D-A and TMNet-3D-B, as shown in Figure 7. TMNet-3D-A
and TMNet-3D-B have a more powerful ability to generate
the supervised signal for the regression branch.

TMNet-3D-A replaces the classification branch with 3D
CNN architecture (e.g. SlowFastNet [29], I3D [11]). Com-
monly, 3D CNN can learn better temporal information than
TSN architecture. In the training stage, TMNet-3D-A keeps
the same setting as TMNet-2D. In the inference stage, it can
also achieve faster inference with only the base backbone and
regression branch, as the blue dashed line box in Figure 7
shown.

TMNet-3D-B further replaces the base backbone with
3D CNN. Under this configure, we can introduce most
state-of-the-art action recognition models into the TMNet
architecture to achieve better results. In the inference stage,
the light-weighted regression branch can replace parts of the
heavy 3D CNN.

The variants of the TMNet-3D not only achieve better
accuracy performance but also prove the flexibility of the
TMNet architecture, easily fused with most action recogni-
tion networks.

We compared the performance of the TMNet-3D with
TMNet-2D and other methods in Table 5. The results prove
that TMNet-3D indeed has better accuracy performance. And
the TMNet-3D-A can also keep the fast inference ability.

C. THE COMPARISON WITH STATE-OF-THE-ART METHODS
After the abundant ablation studies which demonstrate the
efficiency of TMNet, in this subsection, we compare the
TMNet with most state-of-the-art video action recognition
methods, as shown in Figure 5, to prove that TMNet can also
achieve state-of-the-art accuracy performance. We conducted
experiments on the two most popular benchmark data sets:
UCF101, HMDB51. We also showed the results of both the
2D version and the 3D version of TMNet. The final results
demonstrate that TMNet not only has fast inference speed but
also has good accuracy.
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FIGURE 7. The variants of the TMNet-3D.

TABLE 5. The comparison with the state-of-the-art action recognition
methods on UCF101 and HMDB51 data sets. The Top-1 accuracy
of these methods on UCF and HMDB is recorded.

Methods | UCF |HMDB
DT+MVSM [31] 83.5] 559
iDT+FV [32] 859 57.2
TDD+FV 90.3| 63.2
C3D+iDT [8] 90.4 -
LTC+iDT [8] 924| 672
Two Stream [7] 88.6 -
TSN-BN-Inception [10] 94.0 | 68.5
C3D [8] 82.3| 56.8
Conv Fusion 82.6 | 56.8
ST-ResNet [33] 93.5| 664
Inception3D [34] 87.2| 569
3D ResNet101 [35] (16 frames) 889 | 61.7
3D ResNeXt101 [35] (16 frames) 90.7 | 63.8
STC [34] (ResNet101, 16 frames) 90.1 | 62.6
DynamoNet [36] (ResNeXt101,16 frames) | 91.6 | 66.2
RGB-I3D [11] (ResNet50,32 frames) 94.5| 69.0
TMNet-2D(ResNet50, 16 frames ) 89.6 | 59.5
TMNet-3D-A(SlowNet50 [29], 16 frames) | 90.3 | 62.5
TMNet-3D-B(SlowNet50 [29], 16 frames) | 94.5 | 72.3

D. DATASETS
We conduct abundant ablation experiments on popular action
recognition data sets: HMDB51, UCF101 [37].

HMDBS] is a large-scale human action dataset, which
contains 51 action categories and 7,000 manually annotated
clips. These video clips were extracted from different sources,
including digitized movies and YouTube. HMDBS51 has been
widely used as a baseline for action recognition models, and
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it’s still a challenging dataset, the state-of-the-art art results
are still not good enough.

UCF101 is another popular data set of action recognition,
whose video clips were collected from YouTube. There are
101 action categories and 13320 videos in UCF101. Besides,
the 101 action categories are divided into 25 groups, and each
group contains 4-7 videos of an action. The same group’s
videos have a similar background or viewpoint.

E. TRAINING AND INFERENCE DETAILS
We give the training and inference details of our experiments
in this subsection. All of the ablation experiments were con-
ducted on a server with three Nvidia 1080Ti GPUs. We use
PyTorch framework to establish models.

For the ablation studies, in the training stage, we sample
16 frames from original videos as input, and the interval
of frames is 2. The backbone of the TMNet is the ResNet
or ResNeXt. The input frame size is 224 x 224. Several
data augment methods are used on the original data. For
example, the image size is resized to 256 x 256. Then,
we used the multi-scale crop to obtain multi-images with
different scales, and the scale factors are random sampled
from [1, 0.875, 0.75, 0.66, 0.5]. We also use random flip on
images with 0.5 flip ratios. In addition, we use a stepped
learning rate, i.e. the initial learning rate is 0.01, which is
decreased to 0.001 and 0.0001 at iterator 10k and iterator 16k.
The total iterator is 24k finally.

In the inference stage, we also use the image size of
224 x 224. To achieve more stable performance, we use a
random crop strategy. But for the ““one-glance action recog-
nition” configure, a single frame is used for inference, there
is no data augment operation used.

V. VISUALIZATION

To figure out what the TMNet learned, we visualized the
feature map of the last layer of both the self-regression and
classification branches of the TMNet. Because these features
are CNN output features, shaped like C x H x W, we use
the class active map (CAM) [30] to obtain the attention
map.

Figure 6 shows the example of the action HighJump. For
the “RB attention map”’, there is apparently a larger motion
area is captured, similar to the linear superposition of a video
feature sequence. And the regression branch recognizes this
action more confidently (Probability: 0.616).

For the “CB attention map”’, the activation area is smaller,
which indicates that only spatial information is learned in the
classification branch. The recognition confidence (Probabil-
ity: 0.416) of the CB is also lower than that of the RB. This
suggests that the regression branch’s output feature is a kind
of spatial-temporal feature, not just the spatial feature of the
single frame.

VI. CONCLUSION
In this article, we aim to train a light-weight model that
can learn spatial-temporal information from a single one
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frame. We use a self-supervised way to achieve that.
Specifically, We proposed a novel model, called temporal
memory network (TMNet). The TMNet contains three parts
and two losses. Except for the base backbone, TMNet has
two branches, a self-supervised regression branch, and a
classification branch. In the training stage, the regression
branch uses a self-supervised loss to learn spatial-temporal
features with 2D CNN architecture. The supervised signal is
provided by the classification branch. In the inference stage,
the TMNet is a still-image based action recognition model,
the input is the single frame of videos. In this way, we can
achieve lower computation cost and faster inference speed.
In addition, the architecture of the TMNet is also flexible,
three variants (TMNet-2D, TMNet-3D-A, TMNet-3D-B) is
proposed. In this paper, we use the most simple architecture
to realize our motivation, i.e. learning spatial-temporal infor-
mation from a single frame. In the future, more details can be
investigated to improve TMNet further.
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