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ABSTRACT

Small object detection is a very challenging yet practical

vision task. With deep network-based methods, the con-

textual information of small objects may disappear when

the network goes deeper. An intuitive solution to allevi-

ate this issue is to increase the input resolution, however,

it will aggravate the large variant of object scale and intro-

duce unbearable computation cost. To leverage the benefits

of high-resolution images without bringing up new problems,

we propose a High-Resolution Detection Network (HRDNet)

which takes multiple resolution inputs with multi-depth back-

bones. Meanwhile, we propose the Multi-Depth Image Pyra-

mid Network (MD-IPN) and Multi-Scale Feature Pyramid

Network (MS-FPN). The MD-IPN maintains multiple posi-

tion information using multiple depth backbones. Specifi-

cally, high-resolution input will be fed into a shallow network

to reserve more positional information and reduce computa-

tional costs, while low-resolution input will be fed into a deep

network to extract more semantics. By extracting various fea-

tures from high to low resolutions, the MD-IPN can improve

the performance of small object detection and maintain the

performance of middle and large objects. Additionally, MS-

FPN is introduced to align and fuse multi-scale feature groups

generated by MD-IPN to reduce the information imbalance.

Extensive experiments are conducted on the COCO2017 and

the typical small object dataset, VisDrone 2019. Notably, our

HRDNet achieves the state-of-the-art on these two datasets

with significant improvements on small objects.

Index Terms— Small Object Detection, High-resolution

Images, Image Pyramid, Deep Neural Network

1. INTRODUCTION

With the advances of deep learning, object detection achieves

the remarkable progress. According to whether the propos-

als are generated by an independent learning stage or directly

and densely sample possible locations, object detection can

be classified into two-stage or one-stage models. Compared
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to two-stage detectors [1, 2], one stage methods [3, 4] are less

complex and faster with some precision loss. Recently, lots

of anchor-free detectors are proposed, e.g., CornerNet [5],

FCOS [6], FSAF [7], which create some low-level abstrac-

tions of the images like lines, circles, and then ‘iteratively

combine’ them into some objects. However, these methods

are still struggling with small objects.

Those above-mentioned methods can benefit from the

deep and powerful network with multi-level features fusion,

e.g., using feature pyramid network (FPN), but also it will

introduce more computations. While high-resolution images

reserve more detail information, they are helpful for the small

object detection. However, they also introduce new issues,

such as that, it will degrade the performance of large objects

and bring in unaffordable computation cost. We focus on the

trade-offs between large and small object detection and high

performance and low computational complexity.

In this paper, we propose a novel High-resolution Detec-

tion Network (HRDNet), which includes a Multi-Depth Im-

age Pyramid Network (MD-IPN) and a Multi-Scale Feature

Pyramid Network (MS-FPN), as shown in Figure 1. The core

idea of the HRDNet is to use a deep backbone to process low-

resolution images while using a shallow backbone to process

high-resolution images. The advantage of extracting features

from high-resolution images with the shallow and tiny net-

work has been demonstrated in [8]. With HRDNet, we can not

only get more details for a small objects from high-resolution

images, but also guarantee the efficiency and effectiveness by

integrating multi-depth and multi-scale deep networks.

The MD-IPN can be regarded as a variant of the image

pyramid network with multiple streams. MD-IPN is dealing

with the trade-offs between large and small object detection,

as well as high performance and low computational complex-

ity. We extract features from the high-resolution image using

a shallow backbone network. Because of its weak represen-

tation power, we also need deep backbones to obtain robust

semantic features by feeding low-resolution images in. Thus,

the inputs of the MD-IPN form an image pyramid with a fixed

decreasing ratio of α ∈ [0, 1]. The output of MD-IPN is a se-

ries of multi-scale feature groups, while each group contains

multi-level feature maps.

The multi-scale feature groups extend the standard feature
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Fig. 1. Overall structure of HRDNet with MD-IPN and MS-FPN. The input is an image pyramid with N images (N = 3 here),

and the decreasing ratio is α. The outputs of MD-IPN are N groups feature pyramids, and the decreasing ratio of each feature

pyramid is 2. MS-FPN fuses these features into one feature pyramid {F ′
0, F

′
1, F

′
2, F

′
3, F

′
4}, which is used for object detection.

pyramid by adding multi-scale streams. Therefore, traditional

FPN cannot be directly applied here. To fuse these multi-scale

feature groups properly, we proposed the Multi-Scale Feature

Pyramid Network (MS-FPN). As shown in Figure 2, the in-

formation of images not only propagates from high-level fea-

tures to low-level features inside the multi-level feature pyra-

mid, but also between streams of different scales in MD-IPN.

We summarize our contributions as follows:

• We comprehensively analyzed the factors that small ob-

ject detection depends on and the trade-off between

performance and efficiency and proposed the HRDNet,

considering both image pyramid and feature pyramid.

• We designed the multi-depth and multi-stream mod-

ule, i.e., MD-IPN, to balance the performance between

small, middle, and large objects. We also proposed

the MS-FPN, to combine different semantic represen-

tations from multi-scale feature groups.

• Extensive ablation studies validate the effectiveness

and efficiency of the proposed approach when our ap-

proach achieves state-of-the-art performance, particu-

larly on small object detection.

2. RELATED WORK

The state-of-the-art object detection methods include one

stage models, e.g., RetinaNet [3], Yolo-v3 [9], Center net

[10], FSAF [7], Corner net [5], EfficientDet [11] and two-

stage models, e.g., Faster R-CNN [2], Cascade R-CNN [1]

etc. Nevertheless, our HRDNet is a more fundamental and

general framework for most of detection models, such as Reti-

naNet and Cascade R-CNN.

2.1. Small object detection

The detection performance is largely bounded by small ob-

ject detection. Therefore, there are many researches special-

izing in small object detection. For example, [12] proposed

oversampling and copy-pasting small objects to solve such a

problem. Perceptual GAN [13] generated super-resolved fea-

tures and stacked them into feature maps of small objects to

enhance the representations. DetNet [14] maintained the spa-

tial resolution and has a large receptive field to improve small

object detection. SNIP [15] resized images to different reso-

lutions and only train samples which is close to ground truth.

SNIPER [16] is proposed to use regions around the bound-

ing box to remove the influence of background. Unlike these

methods, we combine both image pyramid and feature pyra-

mid together, with which it not only effectively improves the

detection performance of small targets, but also ensure the

detection performance of other objects.

2.2. High-resolution detection

Some studies already explored to do object detection on high-

resolution images. [8] proposed a fast tiny detection network

for high-resolution remote sensing images. [17] proposed an

attention pipeline to achieve fast detection on 4K or 8K videos

using YOLO v2 [18]. However, these works did not fully

explore the effect of high-resolution images for small object

detection, which is what we concentrate on.

2.3. Feature-level imbalance

To capture the semantic information of objects from different

scales, multi-level features are commonly used for object de-

tection. However, they have serious feature-level imbalance

because they convey different semantic information. Feature
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Pyramid Network (FPN) [19] introduced a top-down pathway

to transmit semantic information, alleviating the feature im-

balance problem in some degree. Based on FPN, PANet [20]

involved a bottom-up path to enrich the location information

of deep layers. The Libra R-CNN [21] revealed and tried to

deal with the sample level, feature level, and objective level

imbalance issues. Pang et al. [22] proposed a light weighted

module to produce featured image pyramid features to aug-

ment the output feature pyramid. While these methods only

focus on multi-level features, we proposed a new module

called Multi-scale FPN to solve the imbalance not only from

multi-level features but also from multi-scale feature groups.

up-sampling

conv

New connection

Level 0

Level 1

Level 2

Level 3

Fig. 2. MS-FPN, a feature pyramid with three streams and

four levels. The horizontal orange bar indicates the depth of

Si, the vertical orange bar indicates the depth of a single back-

bone. Better viewed in color and zoom in.

3. HIGH-RESOLUTION DETECTION NETWORK

Intuitively, high-resolution images are good for small ob-

ject detection. Unfortunately, high-resolution images will

introduce unaffordable computation costs to deep networks.

Meanwhile, high-resolution images aggravate the variance of

object scales, making the performance of large objects worse,

as shown in Table 1. To balance computation costs and vari-

ance of objects scales while keeping the performance of all

the classes, we proposed the High-Resolution Detection Net-

work (HRDNet). The HRDNet is a general concept that is

compatible with any alternative detection methods.

Specifically, HRDNet is designed with two modules:

Multi-Depth Image Pyramid Network (MD-IPN) and Multi-

Scale Feature Pyramid Network (MS-FPN). In MD-IPN, an

image pyramid is processed by backbones with different

depth, i.e., using deep CNNs for the low-resolution images

while using shallow CNNs for the high-resolution images, as

shown in Figure 1. After that, to fuse the multi-scale groups

of multi-level features from MD-IPN, MS-FPN is proposed

as a more reasonable feature pyramid architecture (Figure 2).

3.1. MD-IPN

The MD-IPN is composed of N independent backbones with

various depth to process the image pyramid. We term each

(a) (b)

Fig. 3. The change of AP,AP75 over different input’s res-
olution. The HRDNet used here is a two-stream version with

ResNet18+101 backbone.

backbone as a stream. HRDNet can be generalized to more

streams, but for better illustration, we mainly discuss the two-

stream HRDNet and three-stream HRDNet. Figure 1 presents

an example of three-stream HRDNet. Given an image I with

resolution R, the high-resolution image (I0 with R) is pro-

cessed by a stream of shallow CNN (S0), and the lower-

resolution images (I1 and I2 with αR and α2R, and α = 0.5.)

is processed by streams of deeper CNN (S1 and S2). Gener-

ally, we can build an image pyramid network with N inde-

pendent parallel streams, Si, i = {0, 1, . . . , N − 1}.

We use {Ii}N−1
i=0 to represent the input images with differ-

ent resolutions given the original image I0 with the highest

resolution. The outputs of the multi scale image pyramid are

N feature groups {Gi}N−1
i=0 . Each group Gi contains a set of

multi-level features {Fi,j}, where i ∈ {0, 1, . . . , N−1} is the

multi-scale index and j ∈ {0, 1, . . . ,M−1} is the multi-level

index. For example, in Figure 1, N and M are 3, 4 respec-

tively, and the relation can be formulated as Gi = Si(Ii) =
{Fi,0, Fi,1, Fi,2, Fi,3}, where i ∈ {0, 1, . . . , N − 1}.

3.2. MS-FPN

Feature pyramid network (FPN) is one of the key compo-

nents for most object detection algorithms. It combines low-

resolution, semantically strong features with high-resolution,

semantically weak features via a top-down pathway and lat-

eral connections. In our HRDNet, the MD-IPN generates

multi-scale (different resolution) and multi-level (different hi-

erarchy of features) features. To deal with the multi-scale hi-

erarchy features, we also proposed the Multi-Scale FPN (MS-

FPN). Different from FPN, semantic information propagates

not only from high-level features to low-level features but also

from deep stream (low-resolution) to shallow stream (high-

resolution). Therefore, there are two directions for the com-

putation of the multi-scale FPN. The basic operation in multi-

scale FPN is same as traditional FPN, i.e., 1× 1Convolution,

2× up-sampling and sum-up.

In this way, the highest resolution feature, i.e., F0,0, not

only maintain the high-resolution for small object detection

but also combine semantically strong features from multi-

scale streams. Our novel MS-FPN can be formulated as

Fi,j = Conv(Fi,j) + Up(Fi,j+1) if i = N -1, Fi,j =
Conv(Fi,j) + Up(Fi,j+1) + Up(Fi+1,j) if i �= N -1.
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Table 1. Performance Comparison of Cascade R-CNN and HRDNet with different resolution’s input. The HRDNet here

is a two streams version, and † means that it is trained on patch images as mentioned in Section 4.1.

model resolution pedestrian people bicycle car van truck tricycle awning-tri bus motor mAP

Cascade R-CNN 1333× 800 37.9 27.7 13.3 74.3 44.6 34.7 24.6 13.2 52.4 38.3 36.1
Cascade R-CNN 2666× 1600 51.5 38.0 20.2 80.0 48.0 32.4⇓ 28.2 12.1⇓ 44.8⇓ 47.5 40.3

HRDNet 2000× 1200 49.6 37.2 17.4 79.8 47.9 36.9 30.4 15.3 56.0 48.7 41.9
HRDNet 2666× 1600 55.8 42.4 23.1 82.4 51.2 42.1⇑ 34.3 16.3⇑ 59.7⇑ 53.8 46.1

HRDNet † 2666× 1600 56.7 45.1 27.7 82.6 51.3 43.0 37.6 18.8 58.9 56.4 47.8⇑

The Fi,j is the feature in level j and stream i in Figure

2. The Up(.) operation is 2× up-sampling. The Conv(.) is

1× 1 convolution. Finally, MS-FPN outputs the final feature

group G
′
= {F ′

0, F
′
1, ...F

′
i , ...}. F

′
i is calculated by F

′
i =

Conv(F0,i), where F0,i is the features in Group G0, i.e., the

outputs of the highest resolution stream.

4. EXPERIMENTS

4.1. Experiment details

Datasets. We conduct experiments on two typical

small object detection data sets: VisDrone2019 [23] and

COCO2017 [24]. The VisDrone2019 dataset consists of 288

video clips formed by 261,908 frames and 10,209 static im-

ages, covering a wide range location, environment, objects,

and density. The resolution of VisDrone2019 is ranging from

960 to 1360. COCO is the most common benchmark for ob-

ject detection, and we trained our model on the COCO train-

ing set and tested it on the COCO validation set. In COCO,

most images’ resolution is 500-800 px, which will be resized

to 1333 × 800 or 1000 × 600 in the training stage, but 960-

1360 px in VisDrone2019 [25] dataset.

Training. We use SGD optimizer with a mini-batch 2 for

each GPU. The learning rate starts from 0.02 and decreases by

10 at epoch 7 and 11 with totally 15 epochs. The weight decay

is 1× 10−4. The linear warm-up strategy is used with warm-

up iterations of 500, and the warm-up ratio of 1.0/3. The

linear interpolation is applied for the image pyramid. The res-

olution decreasing ratio α is 0.5. To fit the high-resolution im-

ages from VisDrone2019 into the GPU memory, we equally

cropped each original image in VisDrone2019 training set

into four patches which are not overlapped. In this way, we

obtained a new training set with such cropped images.

Inference. Same resolution as training is used for infer-

ence. The NMS IOU threshold is 0.5, and the threshold of

confidence score is 0.05. Without especially emphasizing,

three scales are applied for the multi-scale test.

4.2. Ablation Studies

The effect of image resolution. Extensive ablation studies

on the VisDrone2019 dataset are conducted to illustrate the

effect of input image resolution for detection performance.

Table 1 shows that the performance has a significant improve-

ment with the increase of image resolution. Higher resolution

(A) (B) (C)

Fig. 4. Comparison of the simple FPN (A), multi-scale FPN

aligned with depth (B) and resolution (C). Each column is

one stream in MD-IPN, and each row refers to the depth of

backbone. The blue and gray blocks are those features been

fused and features to be fused respectively. The red arrows is

a basic fusing operation described in subsection 2.3.

leads to better performance under the same experimental set-

tings. The detection of small objects show more improve-

ments. Importantly, HRDNet performs much better than the

SOTA Cascade R-CNN with the same resolution as the input.

Interestingly, when the resolution of input increases, sin-

gle backbone model, i.e., Cascade R-CNN, suffers dramati-

cally decrease ( 1.1-7.6%) for categories with relatively large

size, i.e., truck, awning-tricycle and bus. On the contrary,

significant performance increase (1-5.2%) can be observed

from HRDNet. Simply increasing the image resolution with-

out considering the severe variant of object scale is not the

ideal solution for detection, let alone small object detection.

Explore the optimal image resolution. Is it true higher

resolution leads to better performance? Does it have the opti-

mal resolution for detection? In this part, we will present the

effect of image resolution for object detection. Figure 3 shows

the change of the Average Precise (AP [0.05 : 0.95], AP75)

with different resolutions. The resolution starts from 2666
(long edge) with 400 as the stride. HRDNet achieves the best

performance when the resolution is 3800× 2800 px.

Table 2. The comparison of three different MS-FPNs.

style AP AP50 AP75

ResNet10+18

simple FPN 28.8 49.5 28.8

aligned by resolution 28.7 49.6 28.7

aligned by depth 28.9 49.9 28.7

ResNet18+101

aligned by resolution 31.8 54.0 32.3

aligned by depth 32.0 54.3 32.5
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Table 3. The speed (items/s) and the number of parameters

(M) are obtained on a same machine with one Nvidia GTX
2080Ti GPU and Intel(R) Xeon(R) Silver 4210 CPU. Here is

a two stream HRDNet using MS-FPN aligned with depth.

model backbone resolution params speed AP50

Cascade ResNet18 1333 56.11M 9.9 36.1

Cascade ResNet18 2666 56.11M 5.4 40.3

Cascade ResNet18 3800 56.11M 2.9 42.6

HRDNet ResNet10+18 3800 62.44M 3.7 49.2

HRDNet ResNet18+101 3800 100.78M 2.8 53.3

HRDNet ResNeXt50+101 3800 152.22M 1.5 55.2

Table 4. The comparison of HRDNet and Model Ensemble.

The models here follow the design of Cascade R-CNN.

model backbone resolution AP AP50 AP75

Single Backbone ResNeXt50 3800 32.7 54.6 33.6

Single Backbone ResNeXt101 1900 30.4 51.0 31.1

Model Ensemble ResNeXt50+101 3800+1900 32.9 55.1 33.5

HRDNet ResNeXt50+101 3800+1900 33.5 56.3 34.0

Table 5. The comparison with SOTA models on vis-

drone2019 DET validation set. † results are obtained with

the same environment. ++ denotes multi-scale test.

model backbone resolution AP AP50 AP75

†Cascade R-CNN [1] ResNet50 2666 24.10 42.90 23.60

†Faster R-CNN [2] ResNet50 2666 23.50 43.70 22.20

†RetinaNet[3] ResNet50 2666 15.10 27.70 14.30

†FCOS [6] ResNet50 2666 16.60 28.80 16.70

HFEA [26] ResNeXt101 - 27.10 - -

HFEA [26] ResNeXt152 - 30.30 - -

DSOD [27] ResNet50 - 28.80 47.10 29.30

†HRDNet ResNet10+18 3800 28.68 49.15 28.90

†HRDNet ResNet18+101 2666 28.33 49.25 28.16

†HRDNet ResNet18+101 3800 31.39 53.29 31.63

†HRDNet++ ResNet50+101+152 3800 34.35 56.65 35.51

†HRDNet++ ResNeXt50+101 3800 35.51 62.00 35.13

Table 6. The state of the art performance on COCO test-dev,

the input resolution of HRDNet ResNet101 stream is same

as other models above, i.e. 1333 × 800, while the input of

ResNet 152 stream is a 2× smaller image. ’++’ denotes that

the inference is performed with multi-scales.

model backbone AP APS APM APL

Faster R-CNN w FPN [19] ResNet-101 36.2 18.2 39.0 48.2

DeNet-101(wide) [28] ResNet-101 33.8 12.3 36.1 50.8

CoupleNet [29] ResNet-101 34.4 13.4 38.1 50.8

Mask-RCNN [30] ResNeXt-101 39.8 22.1 43.2 51.2

Cascade RCNN [1] ResNet-101 42.8 23.7 45.5 55.2

SNIP++ [15] ResNet-101 43.4 27.2 46.5 54.9

SNIPER(2scale) [16] ResNet-101 43.3 27.1 44.7 56.1

Grid-RCNN [31] ResNeXt-101 43.2 25.1 46.5 55.2

SSD512 [4] VGG-16 28.8 10.9 31.8 43.5

RetinaNet80++ [3] ResNet-101 39.1 21.8 42.7 50.2

RefineDet512 [32] ResNet-101 36.4 16.6 39.9 51.4

M2Det800 VGG-16 41.0 22.1 46.5 53.8

CornetNet511 [5] Hourglass-104 40.5 19.4 42.7 53.9

FCOS [6] ResNeXt-101 42.1 25.6 44.9 52.0

FSAF [7] ResNeXt-101 42.9 26.6 46.2 52.7

CenterNet511 [10] Hourglass-104 44.9 25.6 47.4 57.4

HRDNet++ ResNet101+152 47.4 32.1 50.5 55.8

How to design the multi-scale FPN. MS-FPN is de-

signed to fuse multi-scale feature groups. Here, we consider

three different styles, including simple FPN, multi-scale FPN
aligned by depth, multi-scale FPN aligned by resolution, as

shown in Figure 4, to demonstrate MS-FPN’s advantage. A

simple FPN is to apply standard FPN to each multi-scale

group of HRDNet and fuse the results of each FPN. New con-

nections between multi-streams are introduced for multi-scale

FPN, as shown in Figure 2. We conducted two groups ex-

periments with ResNet10+18 and ResNet18+101 backbone.

The first experiment in Table 2 shows that the multi-scale

FPN is better than the simple FPN. Both experiments demon-

strate that MS-FPN aligned with depth performs better than

those aligned with resolution. Therefore, we adopt MS-FPN

aligned with depth in our architecture.

Efficient and Effective HRDNet. We illustrate the num-

ber of parameters and running speed of proposed HRDNet,

comparing with the state-of-the-art single backbone baseline.

The results are shown in Table 3 prove that HRDNet can

achieve much better performance with a similar number of

parameters and even faster running speed.

Comparison with model ensemble. To further demon-

strate that the improvement of HRDNet is not due to more
parameters, we compared a two-stream HRDNet with the

ensemble of two backbone models under the same experi-

mental setting (Table 4). The ensembled models fuse the

predicted bounding boxes and scores before NMS (Non-

Maximum Suppression) and then perform NMS. We found

that the single backbone models with high-resolution input

always perform better than those with low-resolution even it

is processed by a stronger backbone. HRDNet performs bet-

ter than the ensemble model, thanks to the novel multi-scale

and multi-level fusion method. They further prove that our

designed MS-FPN is essential for HRDNet.

4.3. Comparison with the state-of-the-art methods

VisDrone2019: We compare HRDNet with the SOTA meth-

ods to demonstrate the advantage of our model and techni-

cal contributions. Table 5 shows that HRDNet achieves the

best performance on VisDrone2019 DET validation set. No-

tably, our model obtains more than 3.0% AP improvement

with ResNeXt50+101 compared to HFEA (ResNet152).

COCO2017: Besides the experiments on VisDrone2019,

we also conduct experiments on the COCO2017 test set to

prove our method works well on a larger scale, complicated

and standard detection dataset. Table 6 shows that HRD-

Net achieves state-of-the-art results, and > 4.9%APsmall im-

provement compared with most recent algorithms.

5. CONCLUSION

In this paper, we propose the HRDNet with well-designed

MD-IPN and MS-FPN to solve the issues which are not
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considered in others for small objects. HRDNet achieves

the state-of-the-art on small object detection dataset, Vis-

Drone2019, at the same time, we outperform with a large

margin on COCO.

6. REFERENCES

[1] Zhaowei Cai and Nuno Vasconcelos, “Cascade r-cnn:

Delving into high quality object detection,” in CVPR,

2018, pp. 6154–6162.

[2] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian

Sun, “Faster r-cnn: towards real-time object detection

with region proposal networks,” IEEE Trans. on PAMI,
vol. 39, no. 6, pp. 1137–1149, 2016.

[3] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He,

and Piotr Dollár, “Focal loss for dense object detection,”

in ICCV, 2017, pp. 2980–2988.

[4] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian

Szegedy, Scott E. Reed, Cheng-Yang Fu, and Alexan-

der C. Berg, “SSD: single shot multibox detector,” in

ECCV, 2016, pp. 21–37.

[5] Hei Law and Jia Deng, “Cornernet: Detecting objects

as paired keypoints,” in ECCV, 2018, pp. 765–781.

[6] Zhi Tian, Chunhua Shen, and et al., “FCOS: Fully con-

volutional one-stage object detection,” in ICCV, 2019,

pp. 9626–9635.

[7] Chenchen Zhu, Yihui He, and Marios Savvides, “Fea-

ture selective anchor-free module for single-shot object

detection,” in CVPR, 2019, pp. 840–849.

[8] ,” .

[9] Joseph Redmon Ali Farhadi and Joseph Redmon,

“Yolov3: An incremental improvement,” arXiv, 2018.

[10] Kaiwen Duan, Song Bai, Lingxi Xie, Honggang Qi,

Qingming Huang, and Qi Tian, “Centernet: Keypoint

triplets for object detection,” in ICCV, 2019, pp. 6569–

6578.

[11] Mingxing Tan, Ruoming Pang, and Quoc V Le, “Ef-

ficientdet: Scalable and efficient object detection,” in

Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, 2020, pp. 10781–10790.

[12] Mate Kisantal, Zbigniew Wojna, Jakub Murawski,

Jacek Naruniec, and Kyunghyun Cho, “Augmen-

tation for small object detection,” arXiv preprint
arXiv:1902.07296, 2019.

[13] Jianan Li, Xiaodan Liang, Yunchao Wei, Tingfa Xu,

Jiashi Feng, and Shuicheng Yan, “Perceptual genera-

tive adversarial networks for small object detection,” in

CVPR, 2017.

[14] Zeming Li, Chao Peng, Gang Yu, Xiangyu Zhang,

Yangdong Deng, and Jian Sun, “Detnet: A backbone

network for object detection,” arXiv, 2018.

[15] Bharat Singh and Larry S Davis, “An analysis of scale

invariance in object detection snip,” in CVPR, 2018, pp.

3578–3587.

[16] Bharat Singh, Mahyar Najibi, and et al., “SNIPER: effi-

cient multi-scale training,” in NeurIPS, 2018.
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