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ABSTRACT

Actions always refer to complex vision variations in a long-range
redundant video sequence. Instead of focusing on limited range
sequence, i.e. convolution on adjacent frames, in this paper, we
proposed an action recognition approach with bootstrapping based
long-range temporal context attention. Specifically, due to vision
variations of the local region across frames, we target at capturing
temporal context by proposing the Temporal Pixels based Parallel-
head Attention (TPPA) block. In TPPA, we apply the self-attention
mechanism between local regions at the same position across tem-
poral frames to capture the interaction impacts. Meanwhile, to deal
with video redundancy and capture long-range context, the TPPA
is extended to the Random Frames based Bootstrapping Attention
(RFBA) framework. While the bootstrapping sampling frames have
the same distribution of the whole video sequence, the RFBA not
only captures longer temporal context with only a few sampling
frames but also has comprehensive representation through multiple
sampling. Furthermore, we also try to apply this temporal context
attention to image-based action recognition, by transforming the
image into “pseudo video® with the spatial shift. Finally, we con-
duct extensive experiments and empirical evaluations on two most
popular datasets: UCF101 for videos and Stanford40 for images. In
particular, our approach achieves top-1 accuracy of 91.7% in UCF101
and mAP of 90.9% in Stanford40.
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1 INTRODUCTION

Action recognition is a challenging task affected by many factors,
such as different illumination conditions, diversity of perspectives,
complex background, and large intra-class changes. Traditionally,
the best performing algorithm was iDT (improved Dense Trajecto-
ries) [29], and the subsequent work was basically to improve the
iDT method. With deep learning, there are more ways to solve the
problem, including Two-Stream [31], C3D (Convolutional 3D) [6],
and RNN [7]. Up to now, with complex vision variations, action
recognition has not been thoroughly solved.

Modeling context dependencies is of crucial importance, espe-
cially for deep neural network-based vision tasks. In images or
videos, traditional convolution operations with receptive fields are
widely used to model the context in spatial space. Meanwhile, the
recurrent operation is another widely used methods for the tempo-
ral context in sequential data. Most existed deep learning methods
are essentially trying to involve the context dependency for better
action recognition performance. However, most of them model the
context dependency within a limited range. For long-range context,
Wang et al. [32] proposed the non-local operation and block to
model more general dependencies, and proved the effectiveness in
most of the computer vision tasks, especially video-based tasks.

Furthermore, a video has a lot of redundancy, while the adjacent
frames are always similar. For most action recognition methods, i.e.
C3D[26] or LSTM[5], while they deal with a short range of similar
frames, it is equivalent to operation on the single identity frame.
Besides, if the video is extremely redundant, these methods not
only improve limited accuracy but also the repeating operation will
result in larger computation cost.

Meanwhile, an action is defined as some object interaction in
some given scenario, thus, for more satisfactory recognition, we
should pay attention to local features. [13] also suggested that the
strong relations between objects contribute more to object detection.
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Figure 1: The overall network structure of the proposed RFBA framework

Zhao et al. [38] proposed a semantic part based action recognition
method. Work[33] represents videos as space-time region graph
based on object local features.

To capture the context-dependency more reasonably, we pay
more attention to long-range context-dependency with self-attention.
self-attention [28] computes the response at a position in a sequence
by attending to all positions and taking their weighted average in an
embedding space. Most of the related studies take the whole frame
as a sequential position with very high computation complexity.
Moreover, action recognition cares more on local objects, thus we
defined the temporal pixels (all the pixels in the same spatial coor-
dinate position across frames) as the basic sample for self-attention.
Then, we designed the self-attention based Temporal Pixels based
Parallel-head Attention (TPPA) block with the pre-defined tempo-
ral pixels. Besides, in TPPA, all the temporal pixels in different
coordinate position are set as parallel multi-head to implement in
parallel across the spatial dimension. The self-attention operation
on temporal pixels has lower complexity compared to that on the
whole of frames. The TPPA is a flexible block that can be added to
any popular Deep Neural Networks.

For most action categories, the key features locate in a few key-
frames, namely, the action can be recognized with a few frames. In
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order to capture these key frames in a longer-range context in a
redundant video, we also designed the Random Frames based Boot-
strapping Attention (RFBA) framework with TPPA. With the RFBA
framework, we used the bootstrapping way[9] to re-sample the
initial video many times. Then, these sampled frames are feed into
the TPPA block and followed by another self-attention module for
more comprehensive feature representation. The general flowchart
of our paper can be seen in Fig. 1. Overall, the main contribution
can be summarized as the following:

o The TPPA block is designed to capture the temporal context-
dependency with self-attention. It not only archive better
recognition but also has lower computation cost.

e To deal with video redundancy and capture more compre-
hensive representation, the RFBA framework is established
on TPPA with bootstrapping-style key frame sampling.

e The proposed approach provided significant performance
improvement from the state-of-the-art methods, and the
visualization result also shows the rationality of it.

2 RELATED WORKS

Attention mechanism. Model with attention can pay attention
to particular regions to emphasize important objects or regions.
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Figure 2: The structure of the TPPA block

Existing attention mechanisms can be grouped into hard attention,
soft attention and self-attention. Mnih et al.[22] and Ba et al.[1]
applied RNN to obtain hard attention map, which is hard binary.

Soft attention is obtained with continuous values, which means
we can train the attention model easily. Sharama et al.[23] proposed
a soft-attention LSTM method to pay more attention to some video
frames, achieving better video classify performance. Li et al.[17]
proposed Video LSTM to model soft attention. these methods take
large computation cost, but only obtain a slight boost.

Another better attention mechanism with lower computational
cost is self-attention. Vaswani et al.[28] summarized the previous
self-attentive models into a unified form. The self-attention mech-
anism is first used in NLP and is introduced to the CV field. Hu
et al.[13] tried to capture the relations of the object by apply self-
attention mechanism in the object detection task. Wang et al.[32]
proposed several different self-attention versions for image task.
But all of these methods still apply attention to objects or frames,
which are global features. Our proposed method is a new version
of self-attention mechanism, which focuses on modeling attention
in local features.

Action recognition. Before the era of deep learning, there have
been some works to solve the human-centered computer vision
tasks[21]. For action recognition, iDT (improved Dense Trajecto-
ries) is a typical work[29]. Recently, deep learning has achieved
significant performance in many computer vision tasks[18, 19],
there are also some works about action recognition with DNNs.
Gkioxari et al.[11] proposed R* CNN based on Region-based Con-
volution Network(CNN)[10], which concentrate on model context
of local features set. Zhao et al.[38] also achieved action classify
by modeling local features of the human body. However, these
methods fuse local features simply, without capturing the complex
context of local features.

There are also many methods proposed to model spatiotempo-
ral information. Simonyan et al.[24] proposed a new two-stream
architecture by using the optical flow feature and RGB feature as
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input. However, optical flow only captures the local motion signals,
TSN[30], TRN[40] is improved architectures based on two stream
network[24]. C3D[26] is another typical architecture, which ex-
pends 2D CNNs into 3D CNNs. 3D convolution operation has the
ability of modeling spatiotemporal information, but also limited
to the kernel receptive field. Varol et al.[27] proved that 3D CNNs
can achieve better results with the longer temporal length of input
and using optical flow features. Although 3D CNNs achieve good
performance, the computation cost is also larger.

Donahue et al.[5] introduced RNN to capture longer temporal
information. Ng et al.[37] proposed two-stream LSTMs. However,
the result of RNN based methods is not good enough, and RNN
can’t deal with longer video sequence well. Our method is designed
to capture context information of the entire input sequence with
lower computation cost and break the limitation of video length.

3 LONG-RANGE CONTEXT ATTENTION
3.1 Basic Attention Module

The long-range context attention is built on the self-attention in
NLP [28], which is based on the Scaled Dot-Product Attention, as
shown in Eq. 1. The input of the attention module includes the
query g € Q and all keys (stacked into the matrix K) of dimension
di, and values (stacked into the matrix V) of dimension d,,. The
similarity is obtained by the dot product between Q and K. Given
Q, K, V, with the softmax function, an attention value is obtained
by the weighted sum of the input values.

KT
Vout = softmax(q—)V
Vi

(1)

Actually, self-attention is a special case of attention mechanism
described above, where the Q,K,V are all the same as the input se-
quence X = {x;}. To derive the video context for action recognition
by self-attention, we defined the temporal pixels at first. Temporal
pixels means a set of channel — dim vectors, F(i, j) = {‘Tt(i,j)}tT:l,
and ¥ is the input feature tensor shaped as T X C x H X W, the
set’s size equals to the temporal size of input T, each vector F* (i, j)
consists of pixel values in the same spatial position (i, j) across
channels. The input of the self-attention module in this paper is
matrix X = F(i, j) as in Fig.2.

3.2 Temporal Pixels based Parallel-head
Attention (TPPA)

There are some shortcoming to view the global frame(all spatial
position) as a sample for self-attention module. For example, the
dimension of the feature is extremely high, and it introduces a
large computation cost. For example, 2048 X 72 = 100,352 is a
typical feature dimension after ResNet-50 network. If we directly
transform the feature to a lower dimension, i.e., with FC layer, it
will lose too much information. Meanwhile, the action is always
defined as several specific objects’ interaction within some special
scenario. That is to say, the local contents, i.e. objects or local
regions, are very crucial for more accurate recognition. Besides,
the above mentioned temporal pixels refer to a local region with
the same semantic content. Therefore, in order to capture context
dependency across different frames, we take the above mentioned
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temporal pixels as the basic sample for self-attention processing, as
shown in Fig.2.

The TPPA block is inserted after a CNN layer with output of C
feature maps (size of C X H X W), i.e. a feature map set. Given the
input F as T feature map sets from a video of T frames after a CNN
layer. (1) € REXHXW refers to the t,), feature map set of CX HXW.
A set of temporal pixels is notated as F(i,j) = {FO, j, :)}Z;l,
where (f“)(i,j, :) (abbreviated as ?(t)(i,j)) refers to a C—dim vector
with values in spatial position (i, j) across the t* h feature map
set. When we defined TX )(i, Jj) as the output of self-attention on
temporal pixels, the ¢ h overall attention feature map set will be
IFX) = {TX)(I',])}. where TX)(i,j) can be computed as:

T
FOG) = > W (0)) - Wy - FG )

n=1

@

Actually, 7:1(:)(1', Jj) is the weighted sum of all the temporal pixels

across T frames. Each temporal pixel (") (i, ) is linearly trans-
formed by Wy, where n is the index referred to T frames in a video.
The attention weight w"(i, j) indicates the impact from the tem-
poral feature ﬁ")(i,j) to ?(t)(i,j), which is calculated as:

N UL )
T Emexp (g™ (i)

(W™ (0. )) - (Wi 7 (i)
Vi

Wo and Wk transform temporal pixels to latent space of dj
dimension linearly. After that, we summarized the whole processing
as Temporal Pixels based Parallel-head Attention(TPPA) block to
compute the temporal context of a video. As shown in Fig.2, this
block is established on basic self-attention operation with temporal
pixels. An TPPA block capture H X W context attention features
{Fali. N}Yall positions in the same way as Eq.(2). We perform self-
attention on each position (i, j) individually and compute them
parallelly. Then, the output of the whole computation process is

Flur (i f) = F1 (G, j) + F4(0. J)
wherei € [1,H],j € [1,W],t € [1,T]

®)

I E

4

®)

H and W is the spatial size of the feature map, which can be the
feature of any stage in CNN. In order to accelerate the multi-way
attention computation process, the self-attention module of each set
of temporal pixels forms a parallel-head, which can be computed
in parallel with matrix form on GPU. The block is performed on
the entire input sequence of features, which means information
propagates across the entire video. On the other hand, we perform
self-attention on each spatial position individually and in parallel,
which not only captures the temporal context of local regions but
also maintains the semantic structure among spatial space.

4 RANDOM FRAMES WITH
BOOTSTRAPPING ATTENTION (RFBA)
The TPPA block can model the context of frame sequence well,

but how to capture longer range context and how to extract key
feature in a long video, are still very important and challenging.
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Therefore, to capture long-range context by reducing the video re-
dundancy, we are inspired by the Bootstrapping mechanism[9], and
designed the Bootstrapping Attention, namely, Random Frames
based Bootstrapping Attention (RFBA), as shown in Fig.1.

4.1 Review of Bootstrapping

Assume that we have data set D and an algorithm A, we want to
use consensus hy = A(D;¢), (0 <t < T) to get more stable perfor-
mance than direct A(D), but we need many more Dy than the D on
hand. One solution is approximate math hy = A(D;) from Dy ~
Random(D, N) using only D on our hand. Random(D, N) means
to randomly select N samples from D. In a word, bootstrapping is
a statistical tool that re-samples from the whole data set D to ‘sim-
ulate’ more input data set D¢, 0 < t < T. We re-sample N samples
from D randomly with replacement, and obtain h; by A(D,), then
the final result would be H = uni form(h;)[9]. The bootstrapping is
simple, but needs to meet some statistical assumptions. One of our
contributions is to verify that the video data satisfies the statistical
assumption of using bootstrapping.

4.2 Backbone Network

Our TPPA block and RFBA framework can be combined with any
popular DNNs architecture, for example, in this paper, we adopt
ResNet and ResNext as our backbone network to build RFBA frame-
work. ResNext is an improved version of ResNet with similar ar-
chitecture. For a ResNet network, there are 5 stages of convolution
layers and 1 classify layer, as shown in Fig.1. Stage 1 consists of a
convolution layer and a pooling layer. Stage 2-5 consist of Convo-
lutional Block and Identity Blocks.

4.3 Bootstrapping Attention

Bootstrapping[9] is a strategy for re-sampling, to generate a serious
Dy, whose distribution is coincident with D. With the basic ideas
of bootstrapping, each g; = A(D¢), 0 < t < Twill be summed
up for final decision. For action recognition, D refers to a set of
frames, and after each D;pass the backbone network, the result
will be summed up finally. We find that the last step of bootstrap-
ping doesn’t consider the diverse impact of different g;. Thus, we
introduce the self-attention mechanism to deal with the results of
bootstrapping and defined the Random Frames based bootstrapping
Attention (RFBA), as shown in Fig.1.

More specifically, as shown in Algorithm.1, the RFBA frame-
work contains three steps. Firstly, with bootstrapping, we sample T
frames each time from the input video sequence Ffor M times. Each
T frames (Fl'.") has a consensus distribution with F. Actually, with
bootstrapping, the T frames in each F"are very sparse according
to the value of T, which also means the video redundancy can
be alleviated. Meanwhile, since we sampled M times and each
F}"has the consensus distribution with F, it also guarantees key
frames and comprehensive features with enough M.

Secondly, each bootstrapping sample set {Dm}xﬂis feed into
the convolution network with TPPA block, and the final result of
TPPA network is pooling into one feature vector hy,. After that,
the M TPPA output attention features H = {hm}l\m/I=1 are feed into
another TPPA block, the orange block in Fig.1, for context attention
of {Dm}xﬂ, Formally, it compute the weighted sum of M TPPA
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Algorithm 1 The algorithm of RFBA

1: hyper param M: Sample M times totally

2: hyper param T: Sample T frames each time

3: Re-sample M times from one video sequence with replacement,
obtain M groups input data Dy,,1 < m < M as in Fig.1

4: for each m € [1, M] do

5 Compute the output of TPPA network hy, = A(Fp,)

6: end

7. Compute Bootstrap Attention result H4 using Eq.6

8: Compute the weighted sum H:A by average pooling

9: return The output of RFBA, H;‘

features with Eq. 6 as the final feature representation Hy.

H-HT

scale

)-H (6)

Hy = sof tmax(

5 ACTION RECOGNITION ON STATIC IMAGE

The original intention in designing TPPA and RFBA is to capture
longer-range temporal context attention for video-based action
recognition. However, to prove the flexible of our approach, we also
try to model spatial contextual information with the TPPA block
and RFBA framework for action recognition on static images.

In order to successfully apply the proposed approach for static
image-based action recognition, the spatial shift operation is in-
volved to construct a sequence data at first. Basically, the spatial
shift is just to do randomly spatial cropping on static images. These
randomly cropped images are combined together as a sequence
data, named pseudo video. For each image, the spatial shift is imple-
mented K times, and then we can obtain a pseudo video of K frames.
Finally, by transforming a still image into such a pseudo video, we
can process this pseudo video in the same way as video data for
action recognition. The obtained frames can be stacked randomly
to a pseudo video because there is no temporal information in the
pseudo video and the TPPA process is a temporal-independent pro-
cess. Actually, the basic spatial shift can be replaced with some other
similar operation. For example, Wu et al.[34] presented a parameter-
free, FLOP-free shift operation as an alternative to spatial convo-
lutions, which can be used as a more comprehensive spatial shift
operation. In fact, the spatial shift operation is simple but effective.
We achieve up to 7.44%mAP improvement in Stanford40[36], which
leads us to believe that our method can also capture the long-range
spatial context attention well for image-based tasks.

6 EXPERIMENTS

In this section, we conduct extensive experiments and empirical
evaluations on two most popular datasets: UCF101[25] for videos
and Stanford40[36] for static images. The whole experiment plan
is summarized as follows. In addition, we note that any DNNs
with a few TPPA blocks is called TPPA net, and the TPPA net with
RFBA framework, as Fig.1 shows, is called RFBA net, in another
word, RFBA net is based on TPPA backbone network. In UCF101
dataset, two different backbone network is adopted: 2D-ResNet
and 3D-ResNext. Firstly, to illustrate the effectiveness of TPPA
block, 4 experiments are conducted: (1) Comparison of TPPA nets
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with TPPA block in a different stage of the backbone network. (2)
Comparison of TPPA nets with a different number of TPPA block.
(3) Comparison of TPPA nets with a different number of input
frames. (4) Comparison of TPPA nets with 2D CNN or 3D CNN
backbone network. Secondly, to figure out the behavior of the RFBA
framework, 3 experiments are conducted: (1) Comparison of single
TPPA net and the RFBA net with the backbone network of the TPPA
net. (2) Comparison of standard RFBA net and RFBA net without
bootstrapping attention (bootstrap model in Tab.4). (3) Comparison
of RFBA nets with different hyperparameters M and T.

In Stanford40 dataset, we only use 2D-ResNet as backbone net-
work due to there is no temporal information in the pseudo video.
So only 5 ablation experiments are conducted: (1) Comparison of
the TPPA net and the basic network without TPPA block. (2) Com-
parison of TPPA nets with a different number of input frames. (3)
Comparison of TPPA nets with a different backbone network. (4)
Comparison of RFBA net and single TPPA net. (5) Comparison of
RFBA nets with different hyperparameters M and T.

6.1 Data and Performance Metrics

UCF101. UCF101[25] has 13320 videos from 101 action categories.
We follow the standard setup of UCF101 following the practice in
[2, 24, 25], and all of the experiments are conducted with the split
1 of official train/test splits. The metrics we use include top-1 and
top-5 accuracy, mean average precision (mAP).

Stanford40. The dataset contains 40 action classes, and there
are 9532 images in total with 180-300 images per action class and
training / test ratio is 4000 / 5532. We report the mean average
precision (mAP) metric to evaluate the performance of our method
following the practice in [11, 38].

6.2 Experimental Setup

We conduct all of the experiments using Pytorch framework on 3
Nvidia 1080Ti GPUs. And there are 2 basic DNNs used in our experi-
ments: (i) 2D-ResNet and (ii) 3D-ResNext. We build and train the two
basic models following the practice in [24] and [14] separately. The
two basic models all obtain reasonable accuracy(about 77.4% and
85.9% top-1 accuracy) compared with the previous results(72.8%[24]
and 83.5%[2] top-1 accuracy) with the same architecture.

Training on UCF101. For the training of TPPA net, we con-
duct experiments of 2D-TPPA Net and 3D-TPPA Net based on
basic DNNs. The input of 2D-model is 3 frames with randomly
cropping(0.3-1.0), and is resized to 224 X 224 pixels. We train the 3D-
model with the input of 16 frames, each frame is resized 224 x 224
pixels. All of the TPPA nets in ablation experiments are fine-tuned
on basic DNNs, basic DNNs are initialized with ImageNet pre-
trained parameters and then trained on UCF101. The learning rate
of training is decreased from initial value 0.1 to 0.001 at epoch 300
with the cosine annealing strategy[20]. We fine-tune the model
with the fixed learning rate of 0.001.

The RFBA nets are no-trained in our experiments, a simple At-
tention Module is applied to realize the bootstrapping attention.
However, in practice, we also can train the RFBA net end-to-end
with a TPPA block as bootstrapping attention, as shown in Fig.1.
The TPPA backbone net in RFBA is pre-trained on UCF101, we only
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perform inference with RFBA framework and achieve awesome
results.

Training on Stanford40. TPPA nets of Stanford40 are all ini-
tialized with the pre-trained parameters on ImageNet[4]. The input
is the pseudo video with 9 frames when training. Each frame is
obtained by shift operation in 5 and is resized to 224 X 224 pixels.
TPPA nets are trained with 2 Nvidia 1080Ti GPU with 30 images
in a mini-batch. The maximum iteration size is 68k iterations with
AdaGrad[8] optimizer and the fixed learning rate value is 0.0001.
We apply the same pre-process as training for inference.

6.3 Experimental Results of Video-based
Action Recognition

Model ‘ modality ‘ acc@1
Two-stream[24] RGB 83.6
Two-stream[24] RGB + flow 91.2

LSTM[5] RGB 81.0
3D-fused[2] RGB 83.2
3D-fused[2] RGB + flow 89.3

13D[2] RGB 84.5
TPPA net[ours] RGB 84.8
RFBA net[ours] RGB 91.7

Table 1: Comparison with state-of-the-art methods on
UCF101 split1.

To evaluate the performance of our model, we conducted experi-
ments on the UCF101 split1 for video-based action recognition. As
shown in Tab.1, our overall model, i.e. RFBA net, achieved 7.2% top-
1 accuracy improvement compared with the methods only based
on RGB modality, and also achieve 0.5% top-1 accuracy improve-
ment with multi-modal methods. There are two different backbone
network we use in our experiments next, 2D-Resnet101[15] and
3D-Resnext101[14, 35].

To figure out the effect TPPA block, we conduct a serious of
experiments on both 2D-resnet backbone and 3D-resnext backbone.

Which stage is the TPPA block in. The TPPA block is added
to different stage of ResNet-152 to figure out if the TPPA is effective
for 2D ResNet model. As shown in Tab.2, when the TPPA block is
added in stage 2, 3, 4, 5 separately, the performance of TPPA nets are

model ‘ Ng ‘ stage ‘ acc@1 ‘ acc@5 ‘ mAP
2D-Res 0 - 77.380 93.188 77.755
deeperRes 0 - 77.617 93.240 75.494
widerRes 0 - 76.407 92.977 77.957
TPPA net 1 stage2 78.406 93.714 80.757
stage3 78.301 93.267 78.906

stage4 78.301 94.161 79.161

stage> 78.406 93.714 80.757

5 stage4|5 77.267 93.206 82.368

10 | stage2[34|5 | 79.509 | 93.526 | 83.885

Table 2: The TPPA nets with different blocks, where Np
refers to the number of stacked TPPA block.
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backbone ‘ model ‘ T ‘ acc@1 ‘ acc@5 ‘ mAP
2D — R101 ResNet 16 77.372 90.960 76.024
TPPA net 16 80.703 94.819 79.718

64 83.378 95.642 80.488

128 84.768 96.669 81.933

3D — RX ResNext 16 85.938 98.061 89.083
TPPA net 16 86.572 98.159 88.799

Table 3: The TPPA nets of different backbone and input,
where T refers to the number of input frames

improved compared to the basic 2D-ResNet. And the performance,
mAP and top-1 accuracy, are gradually increasing from stage2 case
to stage5 case. We argue that TPPA block captures the long-range
temporal context to help improve the performance, and due to
deeper CNN features have a better representation of the action and
smaller spatial size, the TPPA net with TPPA block in the deeper
stage will capture the temporal context of the local region better.

How many are the TPPA blocks. To figure out how deep
is better for the TPPA network, we compare three models with
different number of TPPA blocks inserted to 2D ResNet: one TPPA
(1 after stage5), five TPPAs (2 after stage4 and 3 after stage5), ten
TPPAs (2 after each stage). Tab.2 shows the results of TPPA nets
with different number of TPPA blocks. The results all achieved
significant improvement compared to the result of basic 2D-ResNet,
2.1%top-1 accuracy is obtained (79.509 vs 77.380). We argue that
more TPPA block can reach better prediction result, but too many
blocks also lead to training trouble.

Another question is if the improvement comes from more
parameter or deeper layers. To answer the question, we make the
basic ResNet-152 deeper (by adding a new FC layer with 2048 x 2048
parameters before the last fully connected layer) and wider (by
replacing the last FC layer to be a new FC layer with 51200 x 101
parameters). The row 2-3 of Tab.2 shows that a deeper ResNet just
obtain small improvement (+0.237% top1 accuracy) but damages
about 2.261% on mAP. The difficulty of training more FC layer may
lead to the damage of the mAP. Meanwhile, the wider network
reduces the top-1 accuracy of 0.973% and the mAP increase 0.202%.
In contrast, our approach achieved a better result, +2.1% for top-1
accuracy and +6.1% for mAP, which means that the improvements
are not because TPPA blocks introduce more parameters.

More input frames. Tab.3 shows that the TPPA net improve
3.4% top-1 accuracy (80.703 vs 77.372) than basic ResNet-101 with
T=16 frames. With the increase of the frames, the accuracy and mAP
also increase 7.4% (84.768) and 5.9% (81.933). The results suggest
that more input frames benefit the performance of TPPA block.

TPPA net with 3D CNN backbone. The 2D convolution net-
work with TPPA block can capture temporal context. Furthermore,
we add the TPPA block to the 3D convolution network in the same
way. As shown in Tab. 3, TPPA net with 3D CNN backbone in-
creases the top1 accuracy with about 0.4% (86.572 vs 85.938), which
proves that the TPPA and the 3D convolution operation can be
complementary in capturing temporal information. This is an awe-
some attribution that TPPA can be combined with the most popular
architectures of action recognition.

The ablation experiments of RFBA nets. To evaluate the
effectiveness of the random frames based bootstrapping attention,



Session 2A: Knowledge Processing & Action Analysis

backbone ‘ model ‘ T ‘ M ‘ acc@1 ‘ acc@5 ‘ mAP
2D — R101 ResNet | 16 | - 77.372 | 90.960 | 76.024
TPPAnet | 16 80.703 | 94.819 | 79.718

3 - 77.161 93.286 | 74.905

boostrap | 6 4 81.152 | 94.634 | 85.455

3 4 | 78536 | 94.422 | 83.619

RFBAnet | 16 | 4 83.378 | 95.533 | 86.788

6 4 81.835 | 95.208 | 85.823

3 4 | 80.545 | 94.449 | 84.769

3 | 20 | 82.294 | 95916 | 87.616

3D — RX101 | ResNext | 16 | - 85.938 | 98.061 | 89.083
RFBAnet | 16 88.820 | 98.998 | 91.827

16 | 8 | 91.742 | 99.167 | 93.501

16 | 10 | 91.322 | 99.124 | 93.154

16 | 16 | 90.284 | 98.934 | 92.400

Table 4: Performance of RFBA with M times of bootstrap

we add the RFBA framework on 2D TPPA net and 3D TPPA net
separately to measure the effect of RFBA.

For 2D ResNet-101 backbone network, Tab.4 reports the ablation
experiments results. There is 2.6% improvement in top-1 accuracy
(83.378 vs 80.703) for RFBA net with 16 frames input, compared
with single TPPA net. To explore more about RFBA, we change
hyperparameters, M and T, of RFBA net for more experimental re-
sults. When we have fewer frames T with M=4 times bootstrapping,
both the accuracy and mAP decreased, such as top-1 accuracy from
83.378 to 80.545. This infers that the number of frames is a crucial
factor because fewer input frames can’t represent the distribution
of the whole video well. Besides, by changing the bootstrap times
M for RFBA net, M from 4 to 20, the top-1 accuracy varies from
80.545 to 82.294, more bootstrapping streams leads to better results.

Actually, RFBA is to combine different bootstrapping streams
with the self-attention module, as shown in Fig.1. To emphasize the
essence of this self-attention part, we conducted experiments with
RFBA framework with or without self-attention module (noted
as bootstrap in Tab. 4) with M = 4 times bootstrap. In Tab. 4, it
shows that about 0.7%(81.835 vs 81.152) and 3.2% (80.545 vs 78.536)
on top-1 accuracy improvements are obtained separately with our
RFBA due to introducing the attention.

For 3D ResNext-101 backbone network, while the default input
is 16 frames, we compared the basic 3D ResNext with RFBA net
with different bootstrap times. For example, the result of RFBA net
with 16 frames each sampling and 4 times bootstrap has about 2.8%
(88.82 vs 85.938) improvement on top-1 accuracy. Furthermore, in
order to evaluate the bootstrap times effectiveness in RFBA, we
conduct experiments with different bootstrap times. The results
show that bootstrap more times is not always better, and the best
configure for the 3D model with RFBA is M = 8,T = 16, which
reaches to top-1 accuracy of 91.742%.

By the way, we need to point out that the Bootstrapping attention
used here is a none-trained module. If we train the RFBA block,
we could get better performance. The experiments in Tab.4 also
suggest that RFBA can be combined with any existing network.
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6.4 Experimental Results of Image-based
Action Recognition

The Performance of TPPA net with pseudo video. To prove the
TPPA block contributes to the static image-based recognition, we
evaluate the TPPA net of ResNet50 backbone with 9 frames pseudo
video. The result is shown in 5, there is 5.5% mAP improvement(89.334
vs 83.476) compared with the baseline model. To reduce the influ-
ence of the using of pseudo video, we also compare the TPPA net
and basic model ResNet with the same input, 9 frames pseudo video.
There is still 3.9% on mAP improvement (89.334 vs 85.404). The
result infers that the improvement mainly comes from the using
of TPPA block. The experiments suggest TPPA block has a strong
ability to capture context even with pseudo video.

More pseudo video input frames. To figure out the TPPA net
performance with different input, we compare 5 TPPA nets with
the same architecture and different input, pseudo videos of 3, 6, 9,
19, 40 frames. The result shows that the 2.2% mAP improvement
(89.813 vs 87.688) is obtained when the input is a pseudo video with
40 frames. The results are also consistent with our hypothesis, the
more input frames ensure that the attention mechanism captures
enough context information.

Deeper TPPA net. We conduct experiments to figure out if
there are improvements by deeper backbone network. The result
in Tab.5 shows that 0.6%mAP improvement (89.944 vs 89.334) is
obtained with the deeper TPPA net. So the experiments next will
also be performed with ResNet-101 backbone network.

backbone ‘
2D — R50

model ‘ T ‘
ResNet

mAP

1 - 83.476

9 - 85.404
TPPAnet 3 - 87.688

6

9

- 88.785
- 89.334
89.615
89.813
- 87.439
- 89.944
90.727
90.916
3 90.198
90.496

Table 5: The ablation experiments of Stanford40

2D — R101 TPPA net

3
9
RFBA net 3
3
9

A&A ‘ model ‘ mAP
w/ R*CNN[11] 90.900
Part action network[38] 91.200

Part action network(simple version)[38] | 84.200

w/o MOP[12] 74.200
FV-CNN[3] 75.600

Absolute + Relative scale coding[16] 80.000
TPPAnet[ours] 87.439

RFBAnet[ours] 90.916

Table 6: Comparison with state-of-the-art methods on Stan-
ford40 dataset, w/ A&A and w/o A&A refer to using Artificial
Annotation or not when inference.
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Figure 3: The visualization of the TPPA weighted sum process in UCF101. We show a few frames of the highest weight.
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Figure 4: The visualization of the weighted sum process of TPPA block in pseudo video.

The performance of RFBA net with pseudo video. We con- clearly, we simplify the visualization in two ways: (i) We only show
duct RFBA nets ablation experiments in Tab.5. Firstly, the results the computation process of the first frame in each video. (ii) We
show that all of the RFBA nets achieve improvements compared only show a few frames with the highest weights, i.e. the frames
with TPPA net without RFBA framework, the improvement is up to with orange color in Fig.3. In this way, we can find that each local
3.5%mAP (90.916 vs 87.439). Secondly, we compare RFBA nets with feature (each frame’s feature) has the context of the entire video,
different hyperparameters M and T. With the same input frames T, which is consistent with what we assume.
we perform bootstrapping with more times M, the results are better, In the visualization of Stanford40, the weights are related to color,
+0.3%mAP (90.496 vs 90.198). Finally, The result also suggests that lighter color means higher weight. The weight matrix in Fig.4 is the
we can achieve good enough result (90.916% on mAP), only with a average of the weight matrices of each local region, i.e. {w™? }lh]‘;’l 1
few input frames (3 frames), by RFBA framework. in Eq.3. In the example of fixing a bike. We find that frame 2 and

The best results on Stanford40. The Tab.6 shows the state- frame 5 have the lowest weights because there is no object of “bike”
of-the-art results on stanford40. Our method achieves 90.916% in frame 2 and frame 5. Obviously, it’s extremely hard to recognize
on mAP with RFBA and TPPA, which is almost the best results the action without the “bike” object. According to the visualization,
on the dataset. We also note that the methods in 1-3 rows use TPPA will pay more attention to specific local features, so we argue
artificial annotation and other algorithms to assist in inference. that TPPA can model the context of temporal.

The part action network[38] depends largely on the performance
of Paljt Affinity .Flelds Network (PAF)[39] allgorlthm, not its own 8 CONCLUSION
effectiveness. It is not fair to compare ours with these methods, but

our RFBA net still reaches almost the best result. We proposed an action recognition approach, the Random Frames

based Bootstrapping Attention framework. In our method, we
also introduced an attention block, i.e. the Temporal Pixels based

7 VISUALIZATION Parallel-head Attention (TPPA), which can capture the temporal
As mentioned in Section3.2, attention mechanism is a weighted context attention efficiently. Furthermore, we also try to apply this
sum process. To figure out the behavior of TPPA block, we visualize temporal context attention idea to image-based action recognition,
the process of UCF101 and Stanford40 separately. by transforming the image into the pseudo video. Finally, our exten-

In the visualization of UCF101, we show the attention weighted sive experiments and empirical evaluations show that our approach
sum process, i.e. {7"2:1} using Eq.2. To show the results more achieves satisfactory performance.
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